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Figure S1. Diagram of the mathematical models used to estimate the risk from contaminated 29 

surfaces and the risk from surface-mediated community-transmission. Green rectangles represent 30 

shared equations or parameters between the risk model for contaminated surface and the risk model 31 

for surface-mediated community transmission. Within the dotted brown line we show the model used 32 

to calculate the surface contamination as a function of prevalence. Filled shapes represent the 33 

parameters only used in the intervention scenarios (log10 reduction values). The descriptions of 34 

parameters’ and inputs can be found in Table 1.  35 

 36 
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Table S1. Input parameters for the risk assessment model 39 

Parameter Units Description Distributions 

(Input values)/ 

Equations 

Reference and comments  

𝐶𝑠𝑝 (𝑔𝑐) 

 

Gene 

copies 

(gc) mL-1 

Concentration of 

SARS-CoV-2 in 

sputum or saliva 

ReSample 

(data set) 

(1–4) RT-qPCR data on viral 

loads of 9, 2, 2, and 23 patients 

with COVID-19 

𝐶𝑠𝑢𝑟𝑓 (𝑔𝑐) gc cm-2 Concentration of 

SARS-CoV-2 in 

surfaces  

Point values 

(102.4, 2.5, 11.6, 

6.8, 1.2, 30, 39.3, 

0.8, 0.8, 0.1) 

(5, 6) RT-qPCR data on 

concentration of SARS-CoV-2 in 

surfaces found in public spaces  

gc: PFU unitless Genome copies 

to infectious virus 

conversion factor. 

Used to convert the 

viral concentrations 
𝐶 (𝑔𝑐) to 𝐶 (𝑃𝐹𝑈) 

Uni (102-103)  (7, 8) Based on the ratio for 

influenza A(H1N1), A(H3N2), 

and influenza B and the ratio of 

TCID50 to PFU  

𝑛_gc: PFU unitless Ratio of gc decay to 

infective virus decay 

on surfaces 

Uni (1-50) (9)Informed by data on the 

persistence of influenza on 

surfaces. 

𝑅𝐸 unitless Recovery efficiency Point value (0.6)  (6) Recovery efficiency from 

swabs 

𝑉𝑠 mL  

 

Volume of saliva 

expelled per cough 

 

Uni (0.0396 -

0.0484) 

 

(10) Volume of 0.044mL 

(11) Assumed uniform 

distribution using volume ± 10% 

𝑥 cm Distance between 

hand and mouth  

Uni (5-10) Assumed 

𝑎 degrees Right angle of cone Uni (27.5-35) Based on the images of people 

spreading particles while 

coughing(12, 13) 

𝐴𝑖𝑛𝑜𝑐  cm2 Area of inoculation 

by cough 
𝐴𝑖𝑛𝑜𝑐 =  𝜋 𝑟2 

𝑟 = 𝑥 tan(𝑎) 

(14) Calculated assuming viral 

particles spread conically 

(Supplementary Figure 1) 

𝐶ℎ𝑎𝑛𝑑_𝑖𝑛𝑓 PFU cm-2 Concentration of 

SARS-CoV-2 on the 

hands of an infected 

individual 

 
𝐶𝑠𝑝 𝑉𝑠

𝐴𝑖𝑛𝑜𝑐
 

(14) Calculated assuming viral 

particles spread conically 

(Supplementary Figure 1)  

t1
2

 𝑠𝑡𝑙
  min Half-life of SARS-

CoV-2 in metal 

N (338,35) (15)Based on SARS-CoV-2 

infectivity at 40% RH and 21-

23°C 

t1
2 𝑝𝑙

  min Half-life of SARS-

CoV-2 in plastic 

N (409,39) (15)Based on SARS-CoV-2 

infectivity at 40% RH and 21-

23°C 

𝑛 min-1 Exponential decay 

constant 

ln 2

t1/2
 

Calculated assuming exponential 

decay 

dt min Time between 

surface touching 

Uni (1-20)  

Uni (60-240) 

Based on public transport 

schedules in major cities 

Contact with surfaces was 

assumed to happen between 7 am 

and 11pm 

𝑇𝐸ℎ𝑚  
  

 

% Transfer 

efficiency from 

hand to mucous 

membranes 

N (20,6.3) (16)Transfer efficiency of viruses 

(MS2) from hand to saliva 



𝑇𝐸𝑠ℎ_𝑠𝑡𝑙 % Transfer efficiency 

of virus between 

metal and hand 

N (37.4, 16) (17)Transfer efficiency of 

viruses (MS2) between 

steel and hand at 40-65% RH 

𝑇𝐸𝑠ℎ_𝑝𝑙 % Transfer efficiency 

of virus between 

plastic and hand 

N (79.5,21.2)  

 

(17)Transfer efficiency of 

viruses (MS2) between 

plastic and hand at 40-65% RH 

𝐿𝑅𝑠  Log10 reduction for 

surface disinfection 

Uni (3-4) (18, 19) Log10 reduction of 

coronaviruses on surfaces with 

ethanol and chlorine disinfection 

𝐿𝑅ℎ  Log10 reduction for 

hand disinfection 

Point value (4.25) (20) Log10 reduction of SARS-

CoV with alcohol-based (>75%) 

sanitizer  

𝑃𝑟𝑒𝑣 % Prevalence  Point values  

Low (0.2%) 

Medium (1%) 

High (5%) 

Medium prevalence based on rates 

encountered during the peak of 

the first wave of COVID-19 in 

major cities(21–25). 

Csurf(t+1) PFU cm-2 Concentration of 

SARS-CoV-2 in 

surface at time = t+1 

 

(Csurf(t)-Chand)𝑒−𝑛 𝑑𝑡

𝐿𝑅ℎ

 
Calculated 

𝐶ℎ𝑎𝑛𝑑  PFU cm-2 Concentration of 

SARS-CoV-2 on the 

hands of susceptible 

individuals 

 
𝐶𝑠𝑢𝑟𝑓 𝑇𝐸𝑠ℎ

𝐿𝑅ℎ
 

Calculated 

𝑆𝐴 cm2 Surface area in 

contact with mucous 

membranes  

 

Uni (3.9-5.9) (26) Fractional surface area for 

partial finger. (27)Average hand 

surface area  

𝐷 

 

PFU Dose 

 

 

  

𝐶ℎ𝑎𝑛𝑑 𝑆𝐴  𝑇𝐸𝑠ℎ 

Calculated 

𝑘 

 

PFU-1 Parameter of 

exponential dose-

response 

 

Tri (0.00107, 

0.00246, 

0.00680) 

 

(28) Data obtained from 

QMRAwiki, 

based on 2 studies (29) (30) using 

the 0.5th, 50th, and 99.5th 

percentiles as min, mode, and max 

𝑃𝑖𝑛𝑓 unitless Probability of 

infection 
1 − 𝑒−𝑘𝐷 Calculated 

(28) Model obtained from 

QMRAwiki 

Distributions and input parameters are abbreviated as follows: N= Normal (mean, SD), Uni =Uniform (min-40 
max), Tri=Triangular (min, mode, max). ReSample refers to random sampling with replacement from the data 41 
set of of viral loads reported for patients with COVID-19 in the associated reference. 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 
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 51 

 52 

Inoculation of viruses on hands 53 

We assumed that a cough spread particles conically(14) (Figure 1). The concentration of viruses 54 

(virus cm-2) was estimated by calculating the surface area of a circle projected by the cone at a 55 

distance 𝑥 from the mouth (Equations 1 and 2). Distance 𝑥 was assumed to be a uniform distribution 56 

between 5 and 10 cm. The conical opening angle, between 27.5-35°, was informed by images of 57 

people spreading particles while coughing(12, 13). 58 

 59 

𝑟 = 𝑥 tan(𝑎)                         (Equation 1) 60 

𝐴𝑖𝑛𝑜𝑐 =  𝜋 𝑟2                        (Equation 2) 61 

 62 
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Figure S2. Conical distribution of particles through a cough 72 

 73 
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 74 

Figure S3. Risk of infection vs number of Monte Carlo simulations. The analyses were run five 75 

times for the baseline scenario (Prevalence 1%, no intervention) for 5000, 10000, 20000, 50000, 76 

75000, and 100000 simulations. The average median risk of infection is shown in black circles.  77 
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 89 

Figure S3. Sensitivity analysis for the “Risks from surface-mediated community transmission” 90 

model. Spearman’s correlation coefficients for the parameters used in the community transmission 91 

model.  Parameters are abbreviated as follows: a = opening angle of right cone, Csp = Concentration 92 

of SARS-CoV-2 in the sputum or saliva of patients, dt = contact frequency, GC_inf = genome 93 

copies(gc) per Plaque Forming Units (PFU) ratio, k = parameter of the dose-response exponential 94 

model, LRs = Log10 reduction due to surface disinfection, n = exponential decay constant, surf_dis = 95 

log10 reduction for surface disinfection,  TEhm = transfer efficiency of viruses from hand to mouth, 96 

TEhs = transfer efficiency of viruses from hand to surface, TEsh = transfer efficiency of viruses from 97 

surface to hand, Vs = volume of saliva expelled per cough, x= distance between hand and mouth.  98 

 99 
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Table S2. Percentage of Contacts with Estimated Risks Above 10-4 105 

 Percentage of Contacts with Estimated Risks Above 1 in 10,000   (%) 

 Low Frequency Contacts High Frequency Contacts 

 Low 

Prevalence 

Medium 

Prevalence 

High 

Prevalence 

Low 

Prevalence 

Medium 

Prevalence 

High 

Prevalence 

No Intervention 0.8 3.8 17.2 1.4 6.9 27.6 

Hand Disinfection 

(compliance) 

25% 

50% 

75% 

 

 

     

0.6 2.7 12.9 1.1 5.2 21.0 

0.4 1.9 9.3 0.8 3.4 14.8 

0.2 0.7 5.5 0.3 1.7 6.8 

Surface Disinfection 

(times a day) 

Once (7am) 

Once (12pm) 

Twice (7am,12pm) 

 

 

     

0.5 2.8 12.9 1.4 6.6 27.0 

0.5 2.6 12.0 1.4 6.6 26.8 

0.4 2.0 9.5 1.4 6.4 26.5 

Low prevalence = 0.2% of the population was assumed to have the disease, medium prevalence = 1% 106 
of the population, and high Prevalence = 5% of the population.  107 

 108 

 109 
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 111 

 112 

Figure S4. Modeled virus concentration across time for ten simulations (left), cumulative distribution 113 

function for risks for the same simulations (right). The community transmission model estimates 114 

concentrations across time for seven days (168 hours); inoculation of SARS-CoV-2 into the surface is 115 

considered to happen between 7 am and 11 pm. 116 
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